Features

- EE Programmable 262,144 x 1-, 524,288 x 1-, 1,048,576 x 1-, 2,097,152 x 1-, and 4,194,304 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- Available as a 3.3V (±10%) Commercial and Industrial Version
- Simple Interface to SRAM FPGAs
- Pin Compatible with Xilinx® XC17SXXXXA and XC17SXXXXL PROMs
- Compatible with Xilinx Spartan[®]-II, Spartan-IIE and Spartan XL FPGAs in Master Serial Mode
- Very Low-power CMOS EEPROM Process
- Available in 6 mm x 6 mm x 1 mm 8-lead LAP (Pin-compatible with 8-lead SOIC/VOIC Packages), 8-lead PDIP, 8-lead SOIC, 20-lead SOIC and 44-lead TQFP Packages for a Specific Density
- Low-power Standby Mode
- High-reliability

Endurance: Minimum 10 Write Cycles
 Data Retention: 20 Years at 85°C

Description

The AT17N series FPGA Configuration EEPROM (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17N series device is packaged in the 8-lead LAP, 8-lead PDIP, 8-lead SOIC, 20-lead SOIC and 44-lead TQFP, see Table 1. The AT17N series Configurators uses a simple serial-access procedure to configure one or more FPGA devices.

The AT17N series configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable and factory programming.

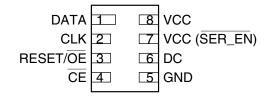
Table 1. AT17N Series Packages

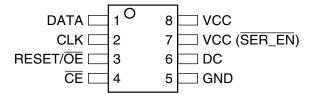
Package	AT17N256	AT17N512/ AT17N010	AT17N002	AT17N040
8-lead LAP	_	Yes	Yes	_
8-lead PDIP	Yes	Yes	_	-
8-lead SOIC	Yes	Use 8-lead LAP ⁽¹⁾	Use 8-lead LAP ⁽¹⁾	-
20-lead SOIC	Yes	Yes	Yes	-
44-lead TQFP	_	_	Yes	Yes

Note: 1. The 8-lead LAP package has the same footprint as the 8-lead SOIC. Since an 8-lead SOIC package is not available for the AT17N512/010/002 devices, it is possible to use an 8-lead LAP package instead.

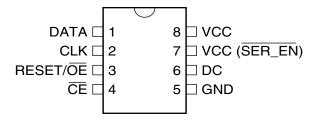
FPGA Configuration Memory

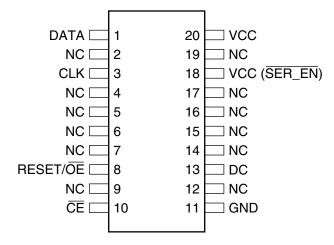
AT17N256 AT17N512 AT17N010 AT17N002 AT17N040

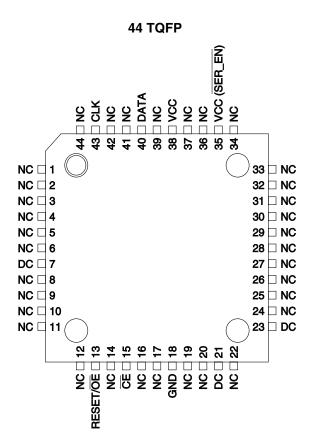

3.3V System Support



Pin Configuration

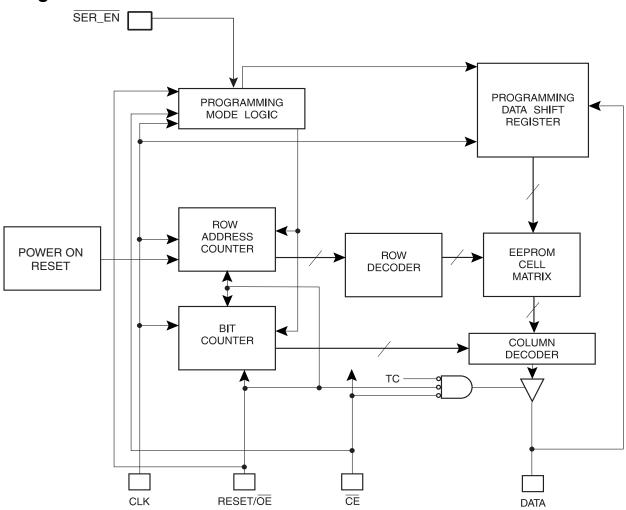

8-lead LAP


8-lead SOIC



8-lead PDIP

20-lead SOIC



Block Diagram

Device Description

The control signals for the configuration EEPROM ($\overline{\text{CE}}$, RESET/ $\overline{\text{OE}}$ and CCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration EEPROM without requiring an external intelligent controller.

The configuration EEPROM RESET/ $\overline{\text{OE}}$ and $\overline{\text{CE}}$ pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/ $\overline{\text{OE}}$ is driven High, the configuration EEPROM resets its address counter and tri-states its DATA pin. The $\overline{\text{CE}}$ pin also controls the output of the AT17N series configurator. If $\overline{\text{CE}}$ is held High after the RESET/ $\overline{\text{OE}}$ reset pulse, the counter is disabled and the DATA output pin is tri-stated. When $\overline{\text{OE}}$ is subsequently driven Low, the counter and the DATA output pin are enabled. When RESET/ $\overline{\text{OE}}$ is driven High again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of $\overline{\text{CE}}$. Upon power-up, the address counter is automatically reset.

Pin Description

		AT17	N256		N512/ 'N010	AT17N002			AT17N040
Name	I/O	8 DIP/ SOIC	20 SOIC	8 DIP/ LAP	20 SOIC	8 LAP	20 SOIC	44 TQFP	44 TQFP
DATA	I/O	1	1	1	1	1	1	40	40
CLK	I	2	3	2	3	2	3	43	43
RESET/OE	I	3	8	3	8	3	8	13	13
CE	I	4	10	4	10	4	10	15	15
GND		5	11	5	11	5	11	18	18
DC	0	6	13	6	13	6	13	21	21
DC	0	_	_	_	_	_	_	23	23
VCC(SER_EN)	I	7	18	7	18	7	18	35	35
V _{CC}		8	20	8	20	8	20	38	38

DATA Three-state DATA output for configuration. Open-collector bi-directional pin for

programming.

CLK Clock input. Used to increment the internal address and bit counter for reading and

programming.

RESET/OE Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low

level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. For most applications, RESET should be programmed

active Low. This document describes the pin as RESET/OE.

Chip Enable input (active Low). A Low level (with OE High) allows CLK to increment the

address counter and enables the data output driver. A High level on \overline{CE} disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will *not* enable/disable the device in the Two-Wire Serial Programming

mode (SER_EN Low).

GND Ground pin. A 0.2 μF decoupling capacitor between V_{CC} and GND is recommended.

VCC(SER_EN) Serial enable must be held High during FPGA loading operations. Bringing SER_EN

Low enables the Two-Wire Serial Programming Mode. For non-ISP applications,

SER_EN should be tied to V_{CC}.

V_{CC} 3.3V (±10%) Commercial and Industrial power supply pin.

NC pins are No Connect pins, which are not internally bonded out to the die.

DC pins are No Connect pins internally connected to the die. It is not recommended to

connect these pins to any external signal.

FPGA Master Serial Mode Summary

The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17N Serial Configuration EEPROM has been designed for compatibility with the Master Serial mode.

This document discusses the master serial mode configuration of Atmel AT17N series configuration memories, pin compatible with Spartan-II, Spartan-IIE and Spartan XL OTP PROMs.

Control of Configuration

Most connections between the FPGA device and the AT17N Serial EEPROM are simple and self-explanatory.

- The DATA output of the AT17N series configurator drives DIN of the FPGA devices.
- The master FPGA CCLK output drives the CLK input of the AT17N series configurator.
- SER_EN must be connected to V_{CC} (except during ISP).
- The CE and OE/Reset are driven by the FPGA to enable output data buffer of the EEPROM.

Programming Mode

The programming mode is entered by bringing \overline{SER} Low. In this mode the chip can be programmed by the Two-Wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip.

Standby Mode

The AT17N series configurators enter a low-power standby mode whenever $\overline{\text{CE}}$ is asserted High. In this mode, the AT17N256 configurator consumes less than 50 μA of current at 3.3V (100 μA for the AT17N512/010 and 200 μA for the AT17N002/040).

Absolute Maximum Ratings*

Operating Temperature40°C to +85°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0.5V
Supply Voltage (V _{CC})
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)2000V

*NOTICE:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Conditions

			3.		
Symbol	Description		Min	Max	Units
V	Commercial	Supply voltage relative to GND -0°C to +70°C	3.0	3.6	٧
V _{CC}	Industrial	Supply voltage relative to GND -40°C to +85°C	3.0	3.6	V

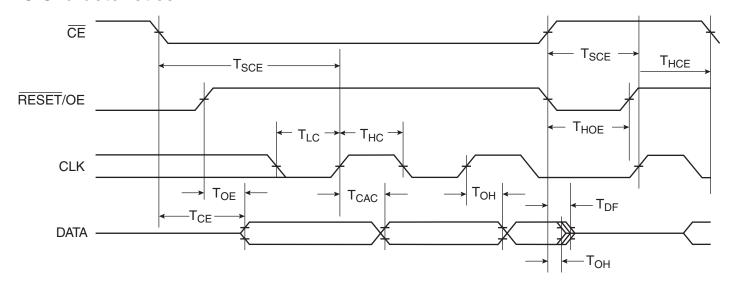
DC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

			AT17N256		AT17N512/ AT17N010		AT17N002/ AT17N040		
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)		2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)		2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode			5		5		5	mA
IL	Input or Output Leakage Current $(V_{IN} = V_{CC} \text{ or GND})$		-10	10	-10	10	-10	10	μΑ
		Commercial		50		100		150	μΑ
I _{CCS}	Supply Current, Standby Mode	Industrial		100		100		150	μΑ

AC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

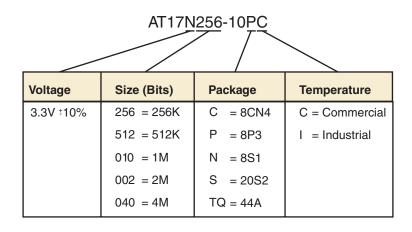

		AT17N256		AT17N512/010/002/040			040			
		Comn	nercial	Indu	strial	Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		50		55		50		55	ns
T _{CE} ⁽¹⁾	CE to Data Delay		60		60		55		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		75		80		55		60	ns
Тон	Data Hold from \overline{CE} , OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		55		50		50	ns
T _{LC}	CLK Low Time	25		25		25		25		ns
T _{HC}	CLK High Time	25		25		25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		30		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		25		25		ns
F _{MAX}	Maximum Clock Frequency		10		10		15		10	MHz

Notes: 1. AC test lead = 50 pF.

8

^{2.} Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

AC Characteristics


Thermal Resistance Coefficients⁽¹⁾

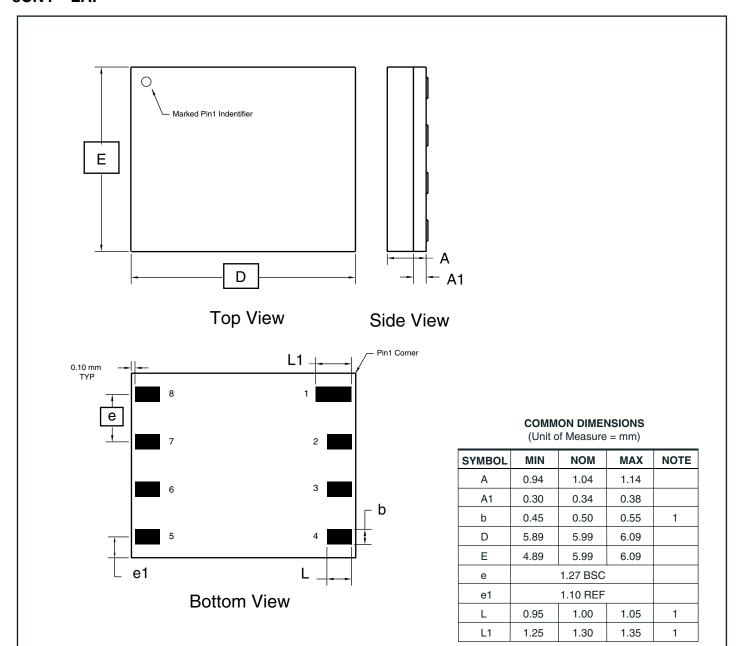
Packag	је Туре		AT17N256	AT17N512/ AT17N010	AT17N002	AT17N040
8CN4	Leadless Array Package (LAP)	θ _{JC} [°C/W]	_	45	45	_
		θ _{JA} [°C/W] ⁽²⁾	-	135.71	159.60	_
8P3	Plastic Dual Inline Package	θ _{JC} [°C/W]	37	37	_	_
(PDIP)	θ _{JA} [°C/W] ⁽²⁾	107	107	-	_	
8S1	Plastic Gull Wing Small Outline	θ _{JC} [°C/W]	45	_	_	_
	(SOIC)	θ _{JA} [°C/W] ⁽²⁾	150	-	-	_
20S2	Plastic Gull Wing Small Outline	θ _{JC} [°C/W]				_
(SOIC)	(SOIC)	θ _{JA} [°C/W] ⁽²⁾				_
44A	Thin Plastic Quad Flat	θ _{JC} [°C/W]	_	_	17	17
	Package (TQFP)	θ _{JA} [°C/W] ⁽²⁾	-	-	62	62

Notes: 1. For more information refer to the "Thermal Characteristics of Atmel's Packages", available on the Atmel web site.

^{2.} Airflow = 0 ft/min.

Figure 1. Ordering Code

	Package Type							
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages							
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)							
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)							
20S2	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)							
44A	44-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)							



Ordering Information

Memory Size	Ordering Code	Package	Operation Range
256-Kbit	AT17N256-10PC	8P3	Commercial
	AT17N256-10NC	8S1	(0°C to 70°C)
	AT17N256-10SC	20S2	
	AT17N256-10PI	8P3	Industrial
	AT17N256-10NI	8S1	(-40°C to 85°C)
	AT17N256-10SI	20S2	,
512-Kbit	AT17N512-10CC	8CN4	Commercial
	AT17N512-10PC	8P3	(0°C to 70°C)
	AT17N512-10SC	20S2	,
	AT17N512-10CI	8CN4	Industrial
	AT17N512-10PI	8P3	(-40°C to 85°C)
	AT17N512-10SI	20S2	,
1-Mbit	AT17N010-10CC	8CN4	Commercial
	AT17N010-10PC	8P3	(0°C to 70°C)
	AT17N010-10SC	20S2	,
	AT17N010-10CI	8CN4	Industrial
	AT17N010-10PI	8P3	(-40°C to 85°C)
	AT17N010-10SI	20S2	, , , , , , , , , , , , , , , , , , ,
2-Mbit	AT17N002-10CC	8CN4	Commercial
	AT17N002-10SC	20S2	(0°C to 70°C)
	AT17N002-10TQC	44A	,
	AT17N002-10CI	8CN4	Industrial
	AT17N002-10SI	20S2	(-40°C to 85°C)
	AT17N002-10TQI	44A	,
4-Mbit	AT17N040-10TQC	44A	Commercial
			(0°C to 70°C)
	AT17N040-10TQI	44A	Industrial
			(-40°C to 85°C)

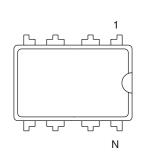
Packaging Information

8CN4 - LAP

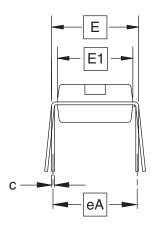
Note: 1. Metal Pad Dimensions.

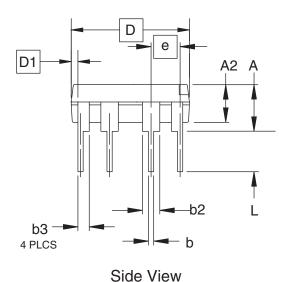
11/14/01

2325 Orchard Parkway San Jose, CA 95131


TITLE
8CN4, 8-lead (6 x 6 x 1.04 mm Body), Lead Pitch 1.27 mm, Leadless Array Package (LAP)

DRAWING NO. REV.
8CN4
A



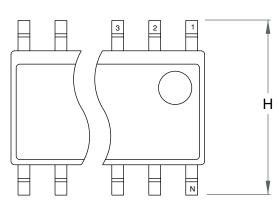

8P3 - PDIP

Top View

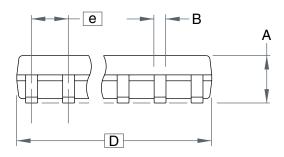
End View

COMMON DIMENSIONS

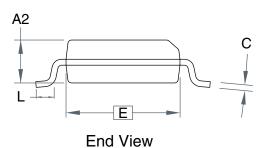
(Unit of Measure = inches)


SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
Е	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е				
eA		4		
L	0.115	0.130	0.150	2

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
 D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).


01/09/02

l		TITLE	DRAWING NO.	REV.
	25 Orchard Parkway n Jose, CA 95131	8P3 , 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	8P3	В


8S1 - SOIC

Top View

Side View

COMMON DIMENSIONS

(Unit of Measure = mm)

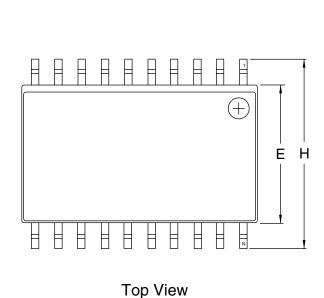
SYMBOL	MIN	NOM	MAX	NOTE
Α	-	-	1.75	
В	_	_	0.51	
С	-	_	0.25	
D	_	_	5.00	
Е	-	_	4.00	
е		1.27 BSC		
Н	_	_	6.20	
L	-	_	1.27	

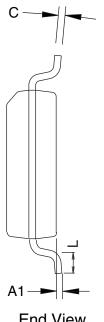
Note: This drawing is for general information only. Refer to JEDEC Drawing MS-012 for proper dimensions, tolerances, datums, etc.

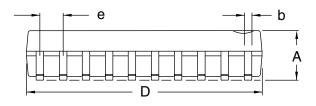
10/10/01

REV.

Α


2325 Orchard Parkway San Jose, CA 95131 **TITLE 8S1**, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)


DRAWING NO. 8S1



20S2 - SOIC

End View

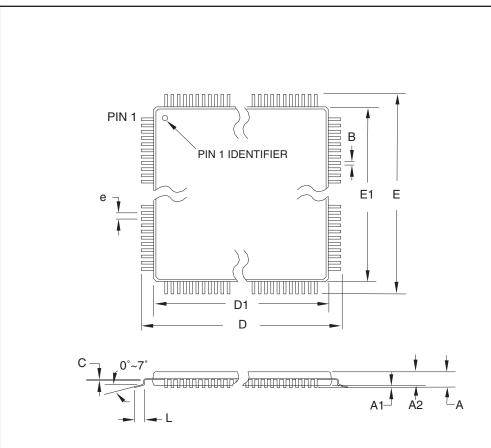
Side View

COMMON DIMENSIONS

(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
Α	0.0926		0.1043	
A1	0.0040		0.0118	
b	0.0130		0.0200	4
С	0.0091		0.0125	
D	0.4961		0.5118	1
E	0.2914		0.2992	2
Н	0.3940		0.4190	
L	0.0160		0.050	3
е	0.	050 BSC		

- Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-013, Variation AC for additional information.


 2. Dimension "D" does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed
 - 0.15 mm (0.006") per side.
 3. Dimension "E" does not include inter-lead Flash or protrusion. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010") per side.

 - "L" is the length of the terminal for soldering to a substrate.

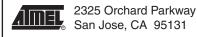
 The lead width "b", as measured 0.36 mm (0.014") or greater above the seating plane, shall not exceed a maximum value of 0.61 mm 1/9/02 (0.024") per side.

San Jose, CA 95131 Wing Small Outline Package (SOIC)	2325 Orchard Parkway San Jose, CA 95131	TITLE 20S2, 20-lead, 0.300" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)	DRAWING NO. 20S2	REV.
--	--	--	---------------------	------

44A - TQFP

COMMON DIMENSIONS

(Unit of Measure = mm)


SYMBOL	MIN	NOM	MAX	NOTE
А	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	11.75	12.00	12.25	
D1	9.90	10.00	10.10	Note 2
Е	11.75	12.00	12.25	
E1	9.90	10.00	10.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е	0.80 TYP			

2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

1. This package conforms to JEDEC reference MS-026, Variation ACB.

3. Lead coplanarity is 0.10 mm maximum.

10/5/2001

Notes:

TITLE

44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
44A	В

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Iapan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602

44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Fax: (33) 4-42-53-60-01

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building

East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

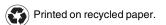
BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Atmel Programmable SLI Hotline (408) 436-4119

Atmel Programmable SLI e-mail configurator@atmel.com


FAQ Available on web site e-mail
literature@atmel.com

Web Site http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof is the registered trademark of Atmel.

FLEX[™] is the trademark of Altera Corporation; ORCA[™] is the trademark of Lattice Semiconductors; SPARTAN[®] and Virtex[®] are the registered trademarks of Xilinx, Inc.; XC3000[™], XC4000[™] and XC5200[™] are the trademarks of Xilinx, Inc.; APEX[™] is the trademark of MIPS Technologies; Other terms and product names may be the trademarks of others.

